Sunday, 22 October 2017

Método médio móvel em séries temporais


Suavização de dados remove a variação aleatória e mostra tendências e componentes cíclicos. Inércia na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é o alisamento. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média calculada ou a média dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. Isto é uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O erro montante verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac suma esquerda (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fração direita) xn. Os (a esquerda (fratura direita)) são os pesos e, é claro, somam para 1.6.2 Médias móveis, m. 40 elesales, ordem 5 41 Na segunda coluna desta tabela, uma média móvel da ordem 5 é mostrada, fornecendo uma Estimativa do ciclo da tendência. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993), o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores nos dois primeiros anos ou nos últimos dois anos porque não temos duas observações em ambos os lados. Na fórmula acima, a coluna 5-MA contém os valores de chapéu com k2. Para ver como se parece a estimativa do ciclo de tendência, nós o traçamos juntamente com os dados originais na Figura 6.7. Planilha 40 elesales, quot principal de vendas de eletricidade residencial, ylab quotGWhot. Xlab quotYearquot 41 linhas 40 ma 40 elecsales, 5 41. col quotredquot 41 Observe como a tendência (em vermelho) é mais suave que os dados originais e captura o movimento principal das séries temporais sem todas as pequenas flutuações. O método de média móvel não permite estimativas de T onde t é próximo das extremidades da série, portanto, a linha vermelha não se estende às bordas do gráfico de cada lado. Mais tarde, usaremos métodos mais sofisticados de estimativa do ciclo de tendência que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa do ciclo da tendência. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito de alterar a ordem da média móvel para os dados residenciais de vendas de eletricidade. As médias móveis simples, como estas, geralmente são de ordem ímpar (por exemplo, 3, 5, 7, etc.). É assim que são simétricas: em uma média móvel da ordem m2k1, há k observações anteriores, k observações posteriores e a observação do meio Que estão em média. Mas se eu fosse igual, não seria mais simétrico. Médias móveis das médias móveis É possível aplicar uma média móvel a uma média móvel. Um dos motivos para isso é fazer uma média móvel em ordem uniforme simétrica. Por exemplo, podemos tomar uma média móvel da ordem 4 e, em seguida, aplicar outra média móvel da ordem 2 aos resultados. Na Tabela 6.2, isso foi feito nos primeiros anos dos dados de produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, começar 1992 41 ma4 lt-ma 40 beer2, order 4. center FALSE 41 ma2x4 lt-ma 40 beer2, order 4. center TRUE 41 A notação 2times4-MA na última coluna significa 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel da ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451.2 (443410420532) 4 e 448.8 (410420532433) 4. O primeiro valor na coluna 2times4-MA é a média desses dois: 450.0 (451.2448.8) 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), é chamado de média móvel centrada da ordem 4. Isso ocorre porque os resultados agora são simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: comece o amplificador de amplificação. Bigfrac (y y y y) frac (y y y y) Grande amplificação fractura fractura fratão frac14y frac14y frac18y. Fim É agora uma média ponderada de observações, mas é simétrico. Outras combinações de médias móveis também são possíveis. Por exemplo, um 3x3-MA é freqüentemente usado e consiste em uma média móvel da ordem 3, seguida de outra média móvel da ordem 3. Em geral, uma ordem final MA deve ser seguida por uma ordem final MA para torná-la simétrica. Da mesma forma, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimando o ciclo de tendência com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo de tendência a partir de dados sazonais. Considere o 2x4-MA: fractura de fractura e fractura fratura de fractura. Quando aplicado a dados trimestrais, cada trimestre do ano recebe peso igual à medida que o primeiro e o último termos se aplicam ao mesmo trimestre em anos consecutivos. Consequentemente, a variação sazonal será promediada e os valores resultantes do chapéu t terão pouca ou nenhuma variação sazonal restante. Um efeito semelhante seria obtido usando um 2x 8-MA ou um 2x 12-MA. Em geral, 2 vezes m-MA é equivalente a uma média móvel ponderada da ordem m1 com todas as observações tomando peso 1m, exceto para os primeiros e últimos termos que tomam pesos 1 (2m). Então, se o período sazonal é igual e de ordem m, use um 2-m-MA para estimar o ciclo da tendência. Se o período sazonal for estranho e de ordem m, use um m-MA para estimar o ciclo de tendências. Em particular, um 2x 12-MA pode ser usado para estimar o ciclo de tendência dos dados mensais e um 7-MA pode ser usado para estimar o ciclo de tendência dos dados diários. Outras opções para a ordem do MA geralmente resultarão em estimativas do ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamentos elétricos A Figura 6.9 mostra um 2x12-MA aplicado ao índice de pedidos de equipamentos elétricos. Observe que a linha suave mostra nenhuma sazonalidade é quase o mesmo que o ciclo de tendência mostrado na Figura 6.2, que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Lote 40 elecequip, ylab quotNome ordem de pedidos. Quotgrayquot quotgrayquot principal quotEquipamento de equipamentos elétricos (área do euro) 41 linhas 40 ma 40 elecequip, ordem 12 41. col quotredquot 41 médias móveis ponderadas As combinações de médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, um m-MA ponderado pode ser escrito como hat t sum k aj y, onde k (m-1) 2 e os pesos são dados por a, pontos, ak. É importante que todos os pesos somem para um e que sejam simétricos para que aj. O m-MA simples é um caso especial em que todos os pesos são iguais a 1m. Uma grande vantagem das médias móveis ponderadas é que eles produzem uma estimativa mais suave do ciclo da tendência. Em vez das observações que entram e saem do cálculo em peso total, seus pesos aumentam lentamente e diminuem lentamente resultando em uma curva mais suave. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns deles são fornecidos na Tabela 6.3.Slideshare usa cookies para melhorar a funcionalidade e o desempenho e fornecer publicidade relevante. Se continuar a navegar no site, você concorda com o uso de cookies neste site. Veja o nosso Contrato de Usuário e Política de Privacidade. O Slideshare usa cookies para melhorar a funcionalidade e o desempenho, e fornecer publicidade relevante. Se continuar a navegar no site, você concorda com o uso de cookies neste site. Consulte nossa Política de Privacidade e Contrato de Usuário para obter detalhes. Explore todos os seus tópicos favoritos no aplicativo SlideShare Obtenha o aplicativo SlideShare para Salvar para Mais tarde, mesmo offline Continuar para o site do celular Fazer o upload de login Assinar Duplo toque para diminuir o modo de média móvel Compartilhe este SlideShare LinkedIn Corporation copy 2017

No comments:

Post a Comment